翻訳と辞書
Words near each other
・ Spinomantis brunae
・ Spinomesencephalic tract
・ Spinon
・ Spinone al Lago
・ Spinone Italiano
・ Spinophorosaurus
・ Spinoplon
・ Spinoplon bicolor
・ Spinoplon inusitatum
・ Spinoplon tutoia
・ Spinopotemnemus kaszabi
・ Spinopraonetha fuscomaculata
・ Spinops
・ Spinor
・ Spinor bundle
Spinor field
・ Spinor genus
・ Spinoreticular tract
・ Spinorphin
・ Spinors in three dimensions
・ Spinosa
・ Spinosad
・ Spinosauridae
・ Spinosaurus
・ Spinosi
・ Spinoside
・ Spinosity
・ Spinoso
・ Spinosodus
・ Spinosomatidia obesa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spinor field : ウィキペディア英語版
Spinor field
In differential geometry, given a spin structure on a ''n''-dimensional Riemannian manifold (''M, g'') a section of the spinor bundle S is called a spinor field. The complex vector bundle
:\pi_:\to M\,
is associated to the corresponding principal bundle
:\pi_:\to M\,
of spin frames over ''M'' via the spin representation of its structure group Spin(''n'') on the space of spinors Δ''n''.
In particle physics particles with spin ''s'' are described by ''2s''-dimensional spinor field, where ''s'' is a integer or a half-integer. Fermions are described by spinor field, while bosons by tensor field.
==Formal definition==
Let (P, ''F''P) be a spin structure on a Riemannian manifold (''M, g'') that is, an equivariant lift of the oriented orthonormal frame bundle \mathrm F_(M)\to M with respect to the double covering \rho: }(n)\,.
One usually defines the spinor bundle \pi_:\to M\, to be the complex vector bundle
:=\times_\Delta_n\,
associated to the spin structure P via the spin representation \kappa: (\Delta_n),\, where U(W) denotes the group of unitary operators acting on a Hilbert space W.
A spinor field is defined to be a section of the spinor bundle S, i.e., a smooth mapping \psi : M \to \, such that \pi_\circ\psi: M\to M\,
is the identity mapping id''M'' of ''M''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spinor field」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.